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Abstract

While a typical supervised learning framework assumes that the inputs and the
outputs are measured at the same levels of granularity, many applications, including
global mapping of disease, only have access to outputs at a much coarser level
than that of the inputs. Aggregation of outputs makes generalization to new
inputs much more difficult. We consider an approach to this problem based on
variational learning with a model of output aggregation and Gaussian processes,
where aggregation leads to intractability of the standard evidence lower bounds. We
propose new bounds and tractable approximations, leading to improved prediction
accuracy and scalability to large datasets, while explicitly taking uncertainty into
account. We develop a framework which extends to several types of likelihoods,
including the Poisson model for aggregated count data. We apply our framework
to a challenging and important problem, the fine-scale spatial modelling of malaria
incidence, with over 1 million observations.

1 Introduction

A typical supervised learning setup assumes existence of a set of input-output examples {(x`, y`)}`
from which a functional relationship or a conditional probabilistic model of outputs given inputs can be
learned. A prototypical use-case is the situation where obtaining outputs y? for new, previously unseen,
inputs x? is costly, i.e., labelling is expensive and requires human intervention, but measurements
of inputs are cheap and automated. Similarly, in many applications, due to a much greater cost
in acquiring labels, they are only available at a much coarser resolution than the level at which
the inputs are available and at which we wish to make predictions. This is the problem of weakly
supervised learning on aggregate outputs [14, 20], which has been studied in the literature in a
variety of forms, with classification and regression notably being developed separately and without
any unified treatment which can allow more flexible observation models. In this contribution, we
consider a framework of observation models of aggregated outputs given bagged inputs, which reside
in exponential families. While we develop a more general treatment, the main focus in the paper is
on the Poisson likelihood for count data, which is motivated by the applications in spatial statistics.

In particular, we consider the important problem of fine-scale mapping of diseases. High resolution
maps of infectious disease risk can offer a powerful tool for developing National Strategic Plans,
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allowing accurate stratification of intervention types to areas of greatest impact [5]. In low resource
settings these maps must be constructed through probabilistic models linking the limited observational
data to a suite of spatial covariates (often from remote-sensing images) describing social, economic,
and environmental factors thought to influence exposure to the relevant infectious pathways. In
this paper, we apply our method to the incidence of clinical malaria cases. Point incidence data of
malaria is typically available at a high temporal frequency (weekly or monthly), but lacks spatial
precision, being aggregated by administrative district or by health facility catchment. The challenge
for risk modelling is to produce fine-scale predictions from these coarse incidence data, leveraging the
remote-sensing covariates and appropriate regularity conditions to ensure a well-behaved problem.

Methodologically, the Poisson distribution is a popular choice for modelling count data. In the
mapping setting, the intensity of the Poisson distribution is modelled as a function of spatial and
other covariates. We use Gaussian processes (GPs) as a flexible model for the intensity. GPs are a
widely used approach in spatial modelling but also one of the pillars of Bayesian machine learning,
enabling predictive models which explicitly quantify their uncertainty. Recently, we have seen many
advances in variational GP posterior approximations, allowing them to couple with more complex
observation likelihoods (e.g. binary or Poisson data [21, 17]) as well as a number of effective scalable
GP approaches [24, 30, 8, 9], extending the applicability of GPs to dataset sizes previously deemed
prohibitive.

Contribution Our contributions can be summarised as follows. A general framework is de-
veloped for aggregated observation models using exponential families and Gaussian processes. This
is novel, as previous work on aggregation or bag models focuses on specific types of output models
such as binary classification. Tractable and scalable variational inference methods are proposed for
several instances of the aggregated observation models, making use of novel lower bounds on the
model evidence. In experiments, it is demonstrated that the proposed methods can scale to dataset
sizes of more than 1 million observations. We thoroughly investigate an application of the developed
methodology to disease mapping from coarse measurements, where the observation model is Poisson,
giving encouraging results. Uncertainty quantification, which is explicit in our models, is essential
for this application.

Related Work The framework of learning from aggregate data was believed to have been
first introduced in [20], which considers the two regimes of classification and regression. However,
while the task of classification of individuals from aggregate data (also known as learning from
label proportions) has been explored widely in the literature [23, 22, 13, 18, 35, 34, 14], there
has been little literature on the analogous regression regime in the machine learning community.
Perhaps the closest literature available is [13], who considers a general framework for learning
from aggregate data, but also only considers the classification case for experiments. In this
work, we will appropriately adjust the framework in [13] and take this to be our baseline. A
related problem arises in the spatial statistics community under the name of ‘down-scaling’,
‘fine-scale modelling’ or ‘spatial disaggregation’ [11, 10], in the analysis of disease mapping,
agricultural data, and species distribution modelling, with a variety of proposed methodologies
(cf. [33] and references therein), including kriging [6]. However, to the best of our knowledge,
approaches making use of recent advances in scalable variational inference for GPs are not considered.

Another closely related topic is multiple instance learning (MIL), concerned with classifica-
tion with max-aggregation over labels in a bag, i.e. a bag is positively labeled if at least one individual
is positive, and it is otherwise negatively labelled. While the task in MIL is typically to predict
labels of new unobserved bags, [7] demonstrates that individual labels of a GP classifier can also be
inferred in MIL setting with variational inference. Our work parallels that approach, considering
bag observation models in exponential families and deriving new approximation bounds for some
common generalized linear models. In deriving these bounds, we have taken an approach similar to
[17], who considers the problem of Gaussian process-modulated Poisson process estimation using
variational inference. However, our problem is made more complicated by the aggregation of labels.
Other related research topics include distribution regression and set regression, as in [28, 15, 16] and
[36]. In these regression problems, while the input data for learning is the same as the current setup,
the goal is to learn a function at the bag level, rather than the individual level, the application of these
methods in our setting, naively treating single individuals as “distributions”, may lead to suboptimal
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performance. An overview of some other approaches for classification using bags of instances is
given in [4].

2 Bag observation model: aggregation in mean parameters

Suppose we have a statistical model p(y|η) for output y ∈ Y , with parameter η given by a function of
input x ∈ X , i.e., η = η(x). Although one can formulate p(y|η) in an arbitrary fashion, practitioners
often only focus on interpretable simple models, hence we restrict our attention to p(y|η) arising
from exponential families. We assume that η is the mean parameter of the exponential family.

Assume that we have a fixed set of points xai ∈ X such that xa = {xa1 , . . . , xaNa
} is a bag of points

withNa individuals, and we wish to estimate the regression value η(xai ) for each individual. However,
instead of the typical setup where we have a paired sample {(x`, y`)}` of individuals and their outputs
to use as a training set, we observe only aggregate outputs ya for each of the bags. Hence, our
training data is of the form

({x1
i }
N1
i=1, y

1), . . . ({xni }
Nn
i=1, y

n), (1)
and the goal is to estimate parameters η(xai ) corresponding to individuals. To relate the aggregate ya

and the bag xa = (xai )Na
i=1, we use the following bag observation model:

ya|xa ∼ p(y|ηa), ηa =

Na∑
i=1

wai η(xai ), (2)

where wai is an optional fixed non-negative weight used to adjust the scales (see Section 3 for
an example). Note that the aggregation in the bag observation model is on the mean parameters
for individuals, not necessarily on the individual responses yai . This implies that each individual
contributes to the mean bag response and that the observation model for bags belongs to the same
parametric form as the one for individuals. For tractable and scalable estimation, we will use
variational methods, as the aggregated observation model leads to intractable posteriors. We consider
the Poisson, normal, and exponential distributions, but devote a special focus to the Poisson model in
this paper, and refer readers to Appendix A for other cases and experimental results for the Normal
model in Appendix H.2.

It is also worth noting that we place no restrictions on the collection of the individuals, with the
bagging process possibly dependent on covariates xai or any unseen factors. The bags can also be
of different sizes, with potentially the same individuals appearing in multiple bags. After we obtain
our individual model η(x), we can use it for prediction of in-bag individuals, as well as out-of-bag
individuals.

3 Poisson bag model: Modelling aggregate counts

The Poisson distribution p(y|λ) = λye−λ/(y!) is considered for count observations, and this paper
discusses the Poisson regression with intensity λ(xai ) multiplied by a ‘population’ pai , which is a
constant assumed to be known for each individual (or ‘sub-bag’) in the bag. The population for a bag
a is given by pa =

∑
i p
a
i . An observed bag count ya is assumed to follow

ya|xa ∼ Poisson(paλa), λa :=

Na∑
i=1

pai
pa
λ(xai ).

Note that, by introducing unobserved counts yai ∼ Poisson(yai |pai λ(xai )), the bag observation ya

has the same distribution as
∑Na

i=1 y
a
i since the Poisson distribution is closed under convolutions.

If a bag and its individuals correspond to an area and its partition in geostatistical applications, as
in the malaria example in Section 4.2, the population in the above bag model can be regarded as
the population of an area or a sub-area. With this formulation, the goal is to estimate the basic
intensity function λ(x) from the aggregated observations (1). Assuming independence given {xa}a,
the negative log-likelihood (NLL) `0 across bags is

− log[Πn
a=1p(y

a|xa)]
c
=

n∑
a=1

paλa−ya log(paλa)
c
=

n∑
a=1

[
Na∑
i=1

pai λ(xai )− ya log

(
Na∑
i=1

pai λ(xai )

)]
,

(3)
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where c
= denotes an equality up to additive constant. During training, this term will pass information

from the bag level observations {ya} to the individual basic intensity λ(xai ). It is noted that once we
have trained an appropriate model for λ(xai ), we will be able to make individual level predictions, and
also bag level predictions if desired. We will consider baselines with (3) using penalized likelihoods
inspired by manifold regularization in semi-supervised learning [2] – presented in Appendix B. In the
next section, we propose a model for λ based on GPs.

3.1 VBAgg-Poisson: Gaussian processes for aggregate counts

Suppose now we model f as a Gaussian process (GP), then we have:

ya|xa ∼ Poisson

(
Na∑
i=1

pai λ
a
i

)
, λai = Ψ(f(xai )), f ∼ GP (µ, k) (4)

where µ and k are some appropriate mean function and covariance kernel k(x, y). (For implementa-
tion, we consider a constant mean function.) Since the intensity is always non-negative, in all models,
we will need to use a transformation λ(x) = Ψ(f(x)), where Ψ is a non-negative valued function.
We will consider cases Ψ(f) = f2 and Ψ(f) = ef . A discussion of various choices of this link
function in the context of Poisson intensities modulated by GPs is given in [17]. Modelling f with
a GP allows us to propagate uncertainty on the predictions to λai , which is especially important in
this weakly supervised problem setting, where we do not directly observe any individual output yai .
Since the total number of individuals in our target application of disease mapping is typically in the
millions (see Section 4.2), we will approximate the posterior over λai := λ(xai ) using variational
inference, with details found in Appendix E.

For scalability of the GP method, as in previous literature [7, 17], we use a set of inducing points
{u`}m`=1, which are given by the function evaluations of the Gaussian process f at landmark points
W = {w1, . . . , wm}; i.e., u` = f(w`). The distribution p(u|W ) is thus given by

u ∼ N(µW ,KWW ), µW = (µ(w`))`, KWW = (k(ws, wt))s,t. (5)

The joint likelihood is given by:

p(y, f, u|X,W,Θ) =

n∏
a=1

Na∏
i=1

Poisson(ya|paλa)p(f |u)p(u|W ), with f |u ∼ GP (µ̃u, K̃), (6)

µ̃(z) = µz + kzWK
−1
WW (u− µW ), K̃(z, z′) = k(z, z′)− kzWK

−1
WWkWz′ (7)

where kzW = (k(z, w1), . . . , k(z, w`))
T , with µW , µz denoting their respective evaluations of the

mean function µ and Θ being parameters of the mean and kernel functions of the GP. Proceeding
similarly to [17], which discusses (non-bag) Poisson regression with GP, we obtain a lower bound of
the marginal log-likelihood log p(y|Θ):

log p(y|Θ) = log

∫ ∫
p(y, f, u|X,W,Θ)dfdu

≥
∫ ∫

log
{
p(y|f,Θ)

p(u|W )

q(u)

}
p(f |u,Θ)q(u)dfdu (Jensen’s inequality)

=
∑
a

∫ ∫ {
ya log

(Na∑
i=1

paiΨ(f(xai )
)
−
(Na∑
i=1

paiΨ(f(xai ))
)}
p(f |u)q(u)dfdu

−
∑
a

log(ya!)−KL(q(u)||p(u|W )) =: L(q,Θ), (8)

where q(u) is a variational distribution to be optimized. The general solution to the maximization over
q of the evidence lower bound L(q,Θ) above is given by the posterior of the inducing points p(u|y),
which is intractable. We introduce a restriction to the class of q(u) to approximate the posterior
p(u|y). Suppose that the variational distribution q(u) is Gaussian, q(u) = N(ηu,Σu). We then
need to maximize the lower bound L(q,Θ) over the variational parameters ηu and Σu. The resulting
q(u) gives an approximation to the posterior p(u|y) which also leads to a Gaussian approximation
q(f) =

∫
p(f |u)q(u)du to the posterior p(f |y), which we finally then transform through Ψ to obtain
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the desired approximate posterior on each λ(xia) (which is either log-normal or non-central χ2

depending on the form of Ψ). The approximate posterior on λ will then allow us to make predictions
for individuals while, crucially, taking into account the uncertainties in f (note that even the posterior
predictive mean of λ will depend on the predictive variance in f due to the nonlinearity Ψ). We also
want to emphasis the use of inducing variables is essential for scalability in our model: we cannot
directly obtain approximations to the posterior of λ(xai ) for all individuals, since this is often large in
our problem setting (Section 4.2).

As the p(u|W ) and q(u) are both Gaussian, the last term (KL-divergence) of (8) can be computed
explicitly with exact form found in Appendix E.3. To consider the first two terms, let qa(va) be the
marginal normal distribution of va = (f(xa1), . . . , f(xaNa

)), where f follows the variational posterior
q(f). The distribution of va is then N(ma, Sa), using (7) :

ma = µxa +KxaWK
−1
WW (ηu − µW ), Sa = Kxa,xa −KxaW

(
K−1
WW −K

−1
WWΣuK

−1
WW

)
KWxa

(9)

In the first term of (8), each summand is of the form

ya
∫

log
(Na∑
i=1

paiΨ (vai )
)
qa(va)dva −

Na∑
i=1

pai

∫
Ψ (vai ) qa(va)dva, (10)

in which the second term is tractable for both of Ψ(f) = f2 and Ψ(f) = ef . The integral of the
first term, however with qa Gaussian is not tractable. To solve this, we take different approaches for
Ψ(f) = f2 and Ψ(f) = ef ; for the former, approximation by Taylor expansion is applied, while for
the latter, further lower bound is taken.

First consider the case Ψ(f) = f2, and rewrite the first term of (8) as:

yaE log ‖V a‖2 ,where V a ∼ N(m̃a, S̃a),

with P a = diag
(
pa1 , . . . , p

a
Na

)
, m̃a = P a1/2ma and S̃a = P a1/2SaP a1/2. By a Taylor series

approximation for E log ‖V a‖2 (similar to [29]) around E ‖V a‖2 = ‖m̃a‖2 + trS̃a, we obtain∫
log
(Na∑
i=1

pai (vai )2
)
qa(va)dva

≈ log
(
ma>P ama + tr(SaP a)

)
−

2ma>P aSaP ama + tr
(

(SaP a)2
)

(ma>P ama + tr(SaP a))
2 =: ζa. (11)

with details are in Appendix E.4. An alternative approach which we use for the case Ψ(f) = ef is to
take a further lower bound, which is applicable to a general class of Ψ (we provide further details for
the analogous approach for Ψ(v) = v2 in Appendix E.2). We use the following Lemma (proof found
in Appendix E.1):
Lemma 1. Let v = [v1, . . . , vN ]> be a random vector with probability density q(v) with marginal
densities qi(v), and let wi ≥ 0, i = 1, . . . , N . Then, for any non-negative valued function Ψ(v),∫

log
( N∑
i=1

wiΨ(vi)
)
q(v)dv ≥ log

( N∑
i=1

wie
ξi
)
, where ξi :=

∫
log Ψ(vi)qi(vi)dvi.

Hence we obtain that ∫
log
(Na∑
i=1

pai e
vai
)
qa(va)dva ≥ log

(Na∑
i=1

pai e
ma

i

)
, (12)

Using the above two approximation schemes, our objective (up to constant terms) can be formulated
as: 1) Ψ(v) = v2

Ls1(Θ, ηu,Σu,W ) :=

n∑
a=1

yaζa −
n∑
a=1

Na∑
i=1

{
(ma

i )2 + Saii/2
}
−KL(q(u)||p(u|W )), (13)
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Figure 1: Left: Random samples on the Swiss roll manifold. Middle, Right: Individual Average
NLL on train set for varying number of training bags n and increasing Nmean, over 5 repetitions.
Constant prediction within bag gives a NLL of 2.22. bag-pixel model gives NLL above 2.4 for the
varying number of bags experiment.

2) Ψ(v) = ev

Le1(Θ, ηu,Σu,W ) :=

n∑
a=1

ya log
(Na∑
i=1

em
a
i
)
−

n∑
j=1

Na∑
i=1

em
a
i +Sa

ii/2 −KL(q(u)||p(u|W )). (14)

Given these objectives, we can now optimise these lower bounds with respect to variational parameters
{ηu,Σu}, parameters Θ of the mean and kernel functions, using stochastic gradient descent (SGD)
on bags. Additionally, we might also learn W , locations for the landmark points. In this form, we
can also see that the bound for Ψ(v) = ev has the added computational advantage of not requiring
the full computation of the matrix Sa, but only its diagonals, while for Ψ(v) = v2 computation of ζa
involves full Sa, which may be problematic for extremely large bag sizes.

4 Experiments

We will now demonstrate various approaches: Variational Bayes with Gaussian Process (VBAgg), a
MAP estimator of Bayesian Poisson regression with explicit feature maps (Nyström) and a neural
network (NN) – the latter two employing manifold regularisation with RBF kernel (unless stated
otherwise). For additional baselines, we consider a constant within bag model (constant), i.e. λ̂ai = ya

pa

and also consider creating ‘individual’ covariates by aggregation of the covariates within a bag (bag-
pixel). For details of all these approaches, see Appendix B. We also denote Ψ(v) = ev and v2 as Exp
and Sq respectively.

We implement our models in TensorFlow5 and use SGD with Adam [12] to optimise their respective
objectives, and we split the dataset into 4 parts, namely train, early-stop, validation and test set. Here
the early-stop set is used for early stopping for the Nyström, NN and bag-pixel models, while the
VBAgg approach ignores this partition as it optimises the lower bound to the marginal likelihood.
The validation set is used for parameter tuning of any regularisation scaling, as well as learning rate,
layer size and multiple initialisations. Throughout, VBAgg and Nyström have access to the same set
of landmarks for fair comparison. It is also important to highlight that we perform early stopping and
tuning based on bag level performance on NLL only, as this is the only information available to us.

For the VBAgg model, there are two approaches to tuning, one approach is to choose parameters
based on NLL on the validation bag sets, another approach is to select all parameters based on the
training objective L1, the lower bound to the marginal likelihood. We denote the latter approach
VBAgg-Obj and report its toy experimental results in Appendix H.1.1 for presentation purposes.
In general, the results are relatively insensitive to this choice, especially when Ψ(v) = v2. To
make predictions, we use the mean of our approximated posterior (provided by a log-normal and
non-central χ2 distribution for Exp and Sq). As an additional evaluation, we report mean square error
(MSE) and bag performance results in Appendix H.

5Code will be available for use.
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4.1 Poisson Model: Swiss Roll

We first demonstrate our method on the swiss roll dataset6, illustrated in Figure 1 (left). To make this
an aggregate learning problem, we first construct n bags with sizes drawn from a negative binomial
distribution Na ∼ NB(Nmean, Nstd), where Nmean and Nstd represents the respective mean and
standard deviation of Na. We then randomly select

∑n
a=1Na points from the swiss roll manifold to

be the locations, giving us a set of colored locations in R3. Ordering these random locations by their
z-axis coordinate, we group them, filling up each bag in turn as we move along the z-axis. The aim
of this is to simulate that in real life the partitioning of locations into bags is often not independent
of covariates. Taking the colour of each location as the underlying rate λai at that location, we
simulate yai ∼ Poisson(λai ), and take our observed outputs to be ya =

∑Na

i=1 y
a
i ∼ Poisson(λa),

where λa =
∑Na

i=1 λ
a
i . Our goal is then to predict the underlying individual rate parameter λai ,

given only bag-level observations ya. To make this problem even more challenging, we embed
the data manifold into R18 by rotating it with a random orthogonal matrix. For the choice of k for
VBAgg and Nyström, we use the RBF kernel, with the bandwidth parameter learnt. For landmark lo-
cations, we use the K-means++ algorithm, so that landmark points lie evenly across the data manifold.

Varying number of Bags: n To see the effect of increasing number of bags available for training,
we fix Nmean = 150 and Nstd = 50, and vary the number of bags n for the training set from
100 to 350 with the same number of bags for early stopping and validation. Each experiment is
repeated for 5 runs, and results are shown in Figure 1 for individual NLL on the train set. Again we
emphasise that the individual labels are not used in training. We see that all versions of VBAgg
outperform all other models, in terms of MSE and NLL, with statistical significance confirmed by a
signed rank permutation test (see Appendix H.1.1). We also observe that the bag-pixel model has
poor performance, as a result of losing individual level covariate information in training by simply
aggregating them.

Varying number of individuals per bag: Nmean To study the effect of increasing bag
sizes (with larger bag sizes, we expect "disaggregation" to be more difficult), we fix the number
of training bags to be 600 with early stopping and validation set to be 150 bags, while varying the
number of individuals per bag through Nmean and Nstd in the negative binomial distribution. To
keep the relative scales between Nmean and Nstd the same, we take Nstd = Nmean/2. The results
are shown in Figure 1, focusing on the best performing methods in the previous experiment. Here, we
observe that VBAgg models again perform better than the Nyström and NN models with statistical
significance as reported in Appendix H.1.1, with performance stable as Nmean increases.

Discussion To gain more insight into the VBAgg model, we look at the calibration of
our two different Bayesian models: VBAgg-Exp and VBAgg-Square. We compute their respective
posterior quantiles and observe the ratio of times the true λai lie in these quantiles. We present
these in Appendix H.1.1. The calibration plots reveal an interesting nature about using the two
different approximations for using ev versus v2 for Ψ(v). While experiments showed that the two
model perform similarly in terms of NLL, the calibration of the models is very different. While the
VBAgg-Square is well calibrated in general, the VBAgg-Exp suffers from poor calibration. This is
not surprising, as VBAgg-Exp uses an additional lower bound on model evidence. Thus, uncertainty
estimates given by VBAgg-Exp should be treated with care.

4.2 Malaria Incidence Prediction

We now demonstrate the proposed methodology on an important real life malaria prediction problem
for an endemic country from the Malaria Atlas Project database7. In this problem, we would like
to predict the underlying malaria incidence rate in each 1km by 1km region (referred to as a pixel),
while having only observed aggregated incidences of malaria ya at much larger regional levels, which
are treated as bags of pixels. These bags are non-overlapping administrative units, with Na pixels per
bag ranging from 13 to 6,667, with a total of 1,044,683 pixels. In total, data is available for 957 bags8.

6The swiss roll manifold function (for sampling) can be found on the Python scikit-learn package.
7Due to confidentiality reasons, we do not report country or plot the full map of our results.
8We consider 576 bags for train, 95 bags each for validation and early-stop, with 191 bags for testing, with

different splits across different trials, selecting them to ensure distributions of labels are similar across sets.
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Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set
bags. Malaria incidence rate λai is per 1000 people. Left, Middle: log(λ̂ai ), with constant model
(Left), and VBAgg-Obj-Sq (tuned on Ls1) (Middle). Right: Standard deviation of the posterior v in
(9) with VBAgg-Obj-Sq.

Along with these pixels, we also have population estimates pai (per 1000 people) for pixel i in bag a,
spatial coordinates given by sai , as well as covariates xai ∈ R18, collected by remote sensing. Some
examples of covariates includes accessibility, distance to water, mean of land surface temperature
and stable night lights. It is clear that rather than expecting malaria incidence rate to be constant
throughout the entire bag (as in Figure 2), we expect pixel incidence rate to vary, depending on social,
economic and environmental factors [32]. Our goal is therefore to build models that can predict
malaria incidence rates at a pixel level.

We assume a Poisson model on each individual pixel, i.e. ya ∼ Poisson(
∑
i p
a
i λ

a
i ), where λai is

the underlying pixel incidence rate of malaria per 1000 people that we are interested in predicting.
We consider the VBAgg, Nyström and NN as prediction models and use a kernel given as a sum of
an ARD (automatic relevance determination) kernel on covariates and a Matérn kernel on spatial
locations for the VBAgg and Nyström methods, learning all kernel parameters (the kernel expression
is provided in Appendix G). We use the same kernel for manifold regularisation in the NN model.
This kernel choice incorporates spatial information, while allowing feature selection amongst other
covariates. For choice of landmarks, we ensure landmarks are placed evenly throughout space by
using one landmark point per training bag (selected by k-means++). This is so that the uncertainty
estimates we obtain are not too sensitive to the choice of landmarks. In this problem, no individual-
level labels are available, so we report Bag NLL and MSE (on observed incidences) on the test bags
in Appendix G over 10 different re-splits of the data. Although we can see that Nyström is the best
performing method, the improvement over VBAgg models is not statistically significant. On the
other hand, both VBAgg and Nyström models statistically significantly outperform NN, which also
has some instability in its predictions, as discussed in Appendix G.1. However, a caution should be
exercised when using the measure of performance at the bag level as a surrogate for the measure of
performance at the individual level: in order to perform well at the bag level, one can simply utilise
spatial coordinates and ignore other covariates, as malaria intensity appears to smoothly vary between
the bags (Left of Figure 2). However, we do not expect this to be true at the individual level.

To further investigate this, we consider a particular region, and look at the predicted individual malaria
incidence rate, with results found in Figure 2 and in Appendix G.1 across 3 different data splits,
where the behaviours of each of these models can be observed. While Nyström and VBAgg methods
both provide good bag-level performance, Nyström and VBAgg-Exp can sometimes provide overly-
smooth spatial patterns, which does not seem to be the case for the VBAgg-Sq method (recall that
VBAgg-Sq performed best in both prediction and calibration for the toy experiments). In particular,
VBAgg-Sq consistently predicts higher intensity along rivers (a known factor [31]; indicated by
triangles in Figure 2) using only coarse aggregated intensities, demonstrating that prediction of
(unobserved) pixel-level intensities is possible using fine-scale environmental covariates, especially
ones known to be relevant such as covariates indicated by the Topographic Wetness Index, a measure
of wetness, see Appendix G.2 for more details.

In summary, by optimising the lower bound to the marginal likelihood, the proposed variational
methods are able to learn useful relations between the covariates and pixel level intensities, while
avoiding the issue of overfitting to spatial coordinates. Furthermore, they also give uncertainty
estimates (Figure 2, right), which are essential for problems like these, where validation of predictions
is difficult, but they may guide policy and planning.
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5 Conclusion

Motivated by the vitally important problem of malaria, which is the direct cause of around 187
million clinical cases [3] and 631,000 deaths [5] each year in sub-Saharan Africa, we have proposed a
general framework of aggregated observation models using Gaussian processes, along with scalable
variational methods for inference in those models, making them applicable to large datasets. The
proposed method allows learning in situations where outputs of interest are available at a much coarser
level than that of the inputs, while explicitly quantifying uncertainty of predictions. The recent uptake
of digital health information systems offers a wealth of new data which is abstracted to the aggregate
or regional levels to preserve patient anonymity. The volume of this data, as well as the availability of
much more granular covariates provided by remote sensing and other geospatially tagged data sources,
allows to probabilistically disaggregate outputs of interest for finer risk stratification, e.g. assisting
public health agencies to plan the delivery of disease interventions. This task demands new high-
performance machine learning methods and we see those that we have developed here as an important
step in this direction.
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A Aggregated Exponential Family Models

Consider an observation model of the form

p(y|θ) = exp

(
yθ − c(θ)

τ

)
h(y, τ), (15)

where response y is one-dimensional, θ is a natural parameter corresponding to the statistic y, τ
is a dispersion parameter, and h(y, τ) is base measure. For simplicity, we will assume that natural
parameters corresponding to the other parts of the sufficient statistic are fixed and folded into the base
measure. Let η be the corresponding mean parameter, i.e.

η = Eθy =

∫
yp(y|θ)dy

and θ = F (η) be the link function mapping from mean to the natural parameters and G(θ) its inverse.
We wish to model the mean parameter η = η(x) using a Gaussian process on a domain X together
with a function Ψ which transforms the GP value to the natural parameter space, i.e.

η(x) = Ψ(f(x)), f ∼ GP(µ, k). (16)

For example, the mean parameter for some models is restricted to the positive part of the real line,
while the GP values cover the whole real line. We will consider the following examples:

• Normal (with fixed variance). F = G = idenity and Ψ can be identity, too, as there are no
restrictions on the mean parameter space.

• Poisson. F (η) = log η, G(θ) = eθ. Ψ should take a positive value, so we consider
Ψ(v) = ev or Ψ(v) = v2.
• Exponential. p(y|η) = exp(−y/η)/η and θ = −η, F (η) = −1/η, G(θ) = −1/θ. Ψ

should take a positive value, so we consider Ψ(v) = ev or Ψ(v) = v2

Note that the link function F is concave for all the examples above.

A.1 Bag model

We will consider the aggregation in the mean parameter space. Namely, let y1, . . . , yn be n indepen-
dent aggregate responses for each of the n bags of covariates xa = {xa1 , . . . , xaNa

}, a = 1, . . . , n.
We assume the following aggregation model:

ya ∼ p(y|ηa), ηa =

Na∑
i=1

wai η
a
i =

Na∑
i=1

wai Ψ(f(xai )), a = 1, . . . , n. (17)

where wai are fixed weights to adjust the scales among the individuals and the bag (e.g., adjusting for
population size).

We also can model individual (unobserved) variables yai (i = 1, . . . , Na), which follow:

yai ∼ p(y|ηai ), ηai = Ψ(f(xai )), i = 1, . . . , Na, a = 1, . . . , n. (18)

Note that we consider aggregation in mean parameters of responses, not in the responses themselves.
If we consider a case where underlying individual responses yai aggregate to ya as a weighted
sum, the form of the bag likelihood and individual likelihood would be different unless we restrict
attention to distribution families which are closed under both scaling and convolution. However,
when aggregation occurs in the mean parameter space, the form of the bag likelihood and individual
likelihood is always the same. This corresponds to the following measurement process:

• Each individual has a mean parameter ηai - if it were possible to sample a response for that
particular individual, we would obtain a sample yai ∼ p(·|ηai )

• However, we cannot sample the individual and we can only observe a bag response. But in
that case, only a single bag response is taken and depends on all individuals simultaneously.
Each individual contributes in terms of an increase in a mean bag response, but this measure-
ment process is different from the two-stage procedure by which we aggregate individual
responses.
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A.2 Marginal likelihood and ELBO

Let Y = (y1, . . . , yn) (bag observations). With the inducing points u = f(W ), the marginal
likelihood is

p(Y ) =

∫ ∫ n∏
a=1

p(ya|ηa)p(f |u)p(u)dudf. (19)

The evidence lower bound can be derived as

log p(Y ) = log

∫ ∫ { n∏
a=1

p(ya|ηa)
p(u)

q(u)

}
p(f |u)q(u)dudf

≥
∫ ∫

log
{ n∏
a=1

p(ya|ηa)
p(u)

q(u)

}
p(f |u)q(u)dudf

=

n∑
a=1

ya

τ

∫
F
(∑

i

wai Ψ(f(xai ))
)
q(f)df −

∫
c
(
F
(∑

i

wai Ψ(f(xai ))
))
q(f)df

−
∫
q(u) log

q(u)

p(u)
du, (20)

where q(f) =
∫
p(f |u)q(u)du.

By setting the variational distribution q(u) as Gaussian, the third term is tractable. The first and
second terms are however tractable only in limited cases. The cases we develop are the Poisson bag
model, described in the main text, as well as the normal bag model and the exponential bag model,
described below.

A.3 Normal bag model

F is identity and c(θ) = θ2/2, which makes both the first and the second terms tractable with the
choice of Ψ(v) = v. Moreover, the viewpoints of aggregating in the mean parameters and in the
individual responses are equivalent for this model and we can also allow different variance parameters
for different bags (and individuals).

Consider a bag a of items {xai }
Na
i=1. Each item xai is assumed to have a weight wai . At the individual

level, we model the (unobserved) responses yai as

yai |xai ∼ N
(
wai µ

a
i , (w

a
i )

2
τai

)
(21)

where µai = µ(xai ), thus µai is a mean parameter per unit weight corresponding to the item xai and
it is assumed to be a function of both xai . Similarly, τai is a variance parameter per unit weight. At
the bag level, we consider the following model for the observed aggregate response ya, assuming
conditional independence of individual responses given covariates xa = {xa1 , . . . , xaNa

}:

ya =

Na∑
i=1

yai , i.e. ya|xa ∼ N (waµa, (wa)2τa), µa =

Na∑
i=1

wai
wa

µai , τ
a =

∑Na

i=1(wai )2τai
(wa)2

(22)

where µa and τa are the mean and variance parameters per unit weight of the whole bag a and
wa =

∑Na

i=1 w
a
i is the total weight of bag a. Although we can take τai to also be a function of

the covariates, here for simplicity, we take τai = τa to be constant per bag (note the abuse of
notation). We can now compute the negative log-likelihood (NLL) across bags (assuming conditional
independence given the xa):

`0 = − log [Πn
a=1p(y

a|xa)] =
1

2

n∑
a=1

log

(
2πτa

Na∑
i=1

(wai )2

)
+

(
ya −

∑Na

i=1 w
a
i µ

a
i

)2

∑Na

i=1(wai )2τa

 (23)

where µai = f(xai ) is the function we are interested in, and τa are the variance parameters to be
learnt.
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We can now consider the lower bound to the marginal likelihood as below (assuming wai = 1 here to
simplify notation, while the analogous expression with non-uniform weights is straightforward):

log p(y|Θ) = log

∫ ∫
p(y, f, u|X,W,Θ)dfdu

= log

∫ ∫ ( n∏
a=1

1√
2πNaτa

exp

(
−

(ya −
∑Na

i=1 f(xai ))2

2Naτa

))
p(u|W )

q(u)
p(f |u)q(u)dfdu

≥
∫ ∫

log

{
n∏
a=1

1√
2πNaτa

exp

(
−

(ya −
∑Na

i=1 f(xai ))2

2Naτa

)
p(u|W )

q(u)

}
p(f |u)q(u)dfdu

= −1

2

∑
a

∫ ∫ 
(ya)2 − 2ya

∑Na

i=1 f(xai ) +
(∑Na

i=1 f(xai )
)2

Naτa

 p(f |u)q(u)dfdu

− 1

2

∑
a

log(2πNaτ
a)−

∫
q(u) log

q(u)

p(u|W )
du. (24)

Using again a Gaussian distribution for q(u), we have q(f) =
∫
p(f |u)q(u)du, which is a normal

distribution and let qa(fa) be its marginal normal distribution of fa = (f(xa1), . . . , f(xaNa
)) with

mean and covariance given by ma and Sa as before in (9).

Then all expectations with respect to q(f) are tractable and the ELBO is simply

L(q, θ) = −1

2

n∑
a=1

{
(ya)2 − 2ya1>ma + 1>

(
Sa +ma(ma)>

)
1

Naτa

}
− 1

2

∑
a

log(2πNaτ
a)

−KL(q(u)||p(u|W )). (25)

A.4 Exponential bag model

In this case, we have F (η) = −1/η. We can apply the similar argument as in Lemma 1. For any
αi > 0 with

∑
i αi = 1, by the concavity of F ,∫
F

(∑
i

wiΨ(vi)

)
q(vi)dvi =

∫
F

(∑
i

αiwi/αiΨ(vi)

)
q(vi)dvi

≥
∫ ∑

i

αiF (wi/αiΨ(vi)) q(vi)dvi

=
∑
i

αi

∫
F (wi/αiΨ(vi)) q(vi)dvi.

For F (η) = −1/η, the last line is equal to∑
i

α2
i

wi

∫
1

Ψ(vi)
q(vi)dvi.

When using a normal q, this is tractable for several choices of Ψ including ev and v2. If we let
ξi :=

∫
1

Ψ(vi)
q(vi)dvi, and maximize ∑

i

α2
i

ξi
wi

under the constraint
∑
i αi = 1, we obtain

αi =
(wi/ξi)∑
`(wi/ξi)

.
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Finally, we have a lower bound∫
F

(∑
i

wiΨ(vi)

)
q(vi)dvi ≥ −

∑
i(wi/ξi)∑
i(wi/ξi)

2
(26)

where
ξi =

∫
1

Ψ(vi)
q(vi)dvi.

which is tractable for a Gaussian variational family. Also with an explicit form of Ψ, it is easy to take
the derivatives of the resulting lower bound with respect to the variational parameters in q(v).

B Alternative approaches

Constant For the Poisson model, we can take λai = λac , a constant rate across the bag, then:

λ̂ac =
ya

pa

hence the individual level predictive distribution is the form yai ∼ Poisson(λ̂ac ), and for unseen bag
r, λ̂bag

c = 1∑n
a=1 p

a

∑n
a=1 y

a, with predictive distribution given by yr ∼ Poisson(prλ̂bag
c ).

bag-pixel: Bag as Individual Another baseline is to train a model from the weighted average of
the covariates, given by xa =

∑Na

i=1
pai
pax

a
i in the Poisson case, and xa =

∑Na

i=1
wa

i

wax
a
i in the normal

case. The purpose of this baseline is to demonstrate that modelling at the individual level is important
during training. Since we now have labels and covariates at the bag level, we can consider the
following model:

ya|xa ∼ Poisson(paλ(xa))
with λ(xa) = Ψ(f(xa)) for the Poisson model. For the normal model, we have:

ya|xa ∼ Normal(waµ(xa), (wa)2τ)

where µ(xa) = f(xa) and τ is a parameter to be learnt (assuming constant across bags). Now we
observe that these models are identical to the individual model, except for a difference in indexing.
Hence, after learning the function f at the bag level, we can transfer the model to the individual
level. Essentially here we have created fake individual level instances by aggregation of individual
covariates inside a bag.

Nyström: Bayesian MAP for Poisson regression on explicit feature maps Instead of the pos-
terior based on the model (6), we can also consider an explicit feature map in order to directly
construct a MAP estimator. While this method does not provide posterior uncertainty over λai , it does
provide an interesting connection to the settings we have considered and also manifold-regularized
neural networks, as discussed below. Let Kzz be the covariance function defined on covariates
{z1, . . . zn}, and consider its low rank approximation Kzz ≈ kzWK

−1
WWkWz with landmark points

W = {w`}m`=1 and kzW = (k(z, w1), . . . , k(z, w`))
T . By using landmark points W , we have

avoided computation of the full kernel matrix, reducing computational complexity. Under this setup,
we have that Kzz ≈ ΦzΦ

>
z , with Φz = kzWK

− 1
2

WW being the explicit (Nyström) feature map. Using
this explicit feature map Φ, we have the following model:

fai = φai β, β ∼ N (0, γ2I)

ya|xa ∼ Poisson

(
Na∑
i=1

pai λ(xai )

)
, λ(xai ) = Ψ(fai ),

where γ is a prior parameter and φai is the corresponding ith row of Φxa . We can then consider a
MAP estimator of the model coefficients β:

β̂ = argmaxβ log[Πn
a=1p(y

a|β,xa)] + log p(β). (27)
This essentially recovers the same model as in (3) with the standard l2 loss regularising the complexity
of the function. This model can be thought of in several different ways, for example as a weight space
view of the GP ([26] for an overview), or as a MAP of the Subset of Regressors (SoR) approximation
[27] of the GP when σ = 1. Additional we may include manifold regulariser as part of the prior, see
discussion below about neural network.
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NN: Manifold-regularized neural networks The next approach we consider is a parametric model
for f as in [13], and search the best parameter to minimize negative log-likelihood `0 across bags. This
paper considers a neural network with parameters θ for the model f , and uses the back-propagation to
learn θ and hence individual level model f . However, since we only have aggregated observations at
the bag level, but lots of individual covariate information, it is useful to incorporate this information
also, by enforcing smoothness on the data manifold given by the unlabelled data. To do this, following
[13] and [22], we pursue a semisupervised view of the problem and include an additional manifold
regularisation term [2] (rescaling with N2

total during implementation):

`1 =

Ntotal∑
w=1

Ntotal∑
u=1

(fu − fw)2kL(xu, xw) = f>L f (28)

where we have suppressed the bag index, Ntotal represents the total number of individuals, kL(·, ·) is
some user-specified kernel9, f = [f1, . . . , fNtotal ]

>, L is the Laplacian defined as L = diag(KL1
>)−

KL, where 1 is just [1, . . . , 1] and KL is a kernel matrix. Although this term involves calculation of a
kernel matrix across individuals, in practice we consider stochastic gradient descent (SGD) and also
random Fourier features [25] or Nyström approximation (see Appendix C), with scale parameter λ1

to control the strength of the regularisation. Similarly, one can also consider manifold regularisation
at the bag level, if bag-level covariates/embeddings are available, for further details, see Appendix D.

In fact, the same regularisation can be applied to the MAP estimation with the explicit feature maps.
This is equivalent to having a prior β ∼ N (0, σ2I + (λ1Φ>LΦ)−1) that is data dependent and
incorporates the structure of the manifold 10.

For implementation, we consider a one hidden layer neural network, with also an output layer, for a
fair comparison to the Nyström approach. For activation function, we consider the Rectified Linear
Unit (ReLU).

MAP estimation of GP We introduce p(f, u) = p(f |u)p(u|W ) and consider the posterior given
by p(u|f, y, w, θ), where here the conditional distribution f |u is given by:

f |u ∼ GP (µ̃u, K̃), (29)

µ̃(z) = µz + kzWK
−1
WW (u− µW ), K̃(z, z′) = k(z, z′)− kzWK

−1
WWkWz′

where kzW = (k(z,W1), . . . , k(z,W`))
T . Using Bayes rule, we obtain:

log[p(u|f, y, w)] = log[p(y|f, u)p(f, u|X,W )]

= log[p(y|f)p(f |u,X)p(u|W )]

=

n∑
a=1

ya log(paλa) +

n∑
a=1

paλa −
n∑
a=1

log(ya!) + log(p(f |u,X)) + log(p(u|W ))

where p(f |u,X) ∼ N (µ̃u, K̃) given by above, and p(u|W ) ∼ N (µW ,ΣWW ), i.e.

log p(f |u,X)+log p(u|W ) = −1

2
(log(|K̃||ΣWW |)+(f−µ̃u)>K̃−1(f−µ̃u)+(u−µW )>Σ−1

WW (u−µW )

(30)
Here, we can not perform SGD, as the latter terms does not decompose into a sum over the data.
More importantly, here we require the computation of K̃, which contains the kernel matrix K, even
after the use of landmarks. This direct approach is not feasible for large number of individuals, which
is true in our target application, and hence we do not pursue this method, and consider Nyström and
NN as baselines.

C Random Fourier Features on Laplacian

Here we discuss using random Fourier features [25] to reduce computational cost in calculation of
the Laplacian defined as L = diag(K1>)−K, where 1 is just [1, . . . , 1] and K. Suppose the kernel

9In practice, this does not have to be a positive semi-definite kernel, it can be derived from any notion of
similarity between observations, including k-nearest neighbours.

10In order to guarantee positive definiteness of Laplacian, one can add εI , where ε > 0.
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is stationary i.e. kw(x − y) = k(x, y) (some examples include the gaussian and matern kernel),
then using random Fourier features, we obtain K ≈ ΦΦ>, where Φ ∈ RbN×m, bN denotes the total
number of individuals in the batch and m denotes the number of frequencies. Now we have:

f>Lf ≈ f>diag(ΦΦ>1>)f − f>ΦΦ>f = f>diag(ΦΦ>1>)f − ||Φ>f ||22 (31)
In both terms, we can avoid computing the kernel matrix, by carefully selecting the order of computa-
tion. Note another option is to consider Nyström approximation with landmark points {z1, . . . zm},
then K ≈ KnmK

−1
mmKmn, where Kmm denotes the kernel matrix on landmark points, while Knm

is the kernel matrix between landmark and data. Then Φ = KnmK
− 1

2
mm.

D Bag Manifold regularisation

Suppose we have bag covariates sa (note these are for the entire bag), and also some summary
statistics of a bag, e.g. mean embeddings [19] given by Ha = 1

Na

∑Na

i=1 h(xai ), with some user-
defined h. Then similarly to individual level manifold regularisation, we can consider manifold
regularisation at the bag level (assuming a seperable kernel for simplicity), i.e.

`2 =

n∑
l=1

n∑
m=1

(F l − Fm)2ks(s
l, sm)kh(H l, Hm) = F>LbagF (32)

where F a = 1
Nl

∑Na

i=1 f
a
i , ks is a kernel on bag covariates sa, kµ is a kernel on Ha, Lbag is the bag

level Laplacian with the corresponding kernel, and F = [F 1, . . . , Fn]>. Combining all these terms,
we have the following loss function to minimise:

` =
1

b
`0 +

λ1

b2N
`1 +

λ2

b2N
`2 (33)

where b is the mini-batch size in SGD, BN is the total number of individuals in each mini-batch, λ1

and λ2 are parameters controlling the strength of the respective regularisation.

E Additional details for Poisson variational derivation

E.1 Log-sum lemma

Lemma 2. Let v = [v1, . . . , vN ]> be a random vector with probability density q(v), and let wi ≥ 0,
i = 1, . . . , N . Then, for any non-negative valued function Ψ(v),∫

log
( N∑
i=1

wiΨ(vi)
)
q(v)dv ≥ log

( N∑
i=1

wie
ξi
)
,

where
ξi :=

∫
log Ψ(vi)qi(vi)dvi.

Proof. Let α1, . . . , αN be non-negative numbers with
∑N
i=1 αi = 1. It follows from Jensen’s

inequality that ∫
log
( N∑
i=1

wiΨ(vi)
)
q(v)dv =

∫
log
( N∑
i=1

αi
wi

αi
Ψ(vi)

)
q(v)dv ≥

N∑
i=1

αi

[∫
log
(

Ψ(vi)
)
q(vi)dvi + log

wi
αi

]
=

N∑
i=1

αiξi +

N∑
i=1

αi log
wi
αi
. (34)
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By Lagrange multiplier method, maximizing the last line with respect to α gives

αi =
wie

ξi∑N
j=1 wje

ξj
.

Plugging this to (34) completes the proof.

E.2 A lower bound of marginal likelihood for Ψ(f) = ef and Ψ(f) = f2

Using Lemma 2, we obtain that∫
log
( N∑
i=1

paiΨ(vai )
)
q(va)dva ≥ log

( N∑
i=1

paiΨ(ξai )
)
, (35)

where

ξai =

∫
log Ψ(vai )qai (vai )dvai .

The above lower bound is tractable for the popular functions Ψ(v) = v2 and Ψ(v) = ev under the
normal variational distributions qa(va) ∼ N (ma, Sa) . In particular,

Ψ(v) = ev : ξai =

∫
vai q

a
i (vai )dvai = ma

i ,

Ψ(v) = v2 : ξai =

∫
log(vai )2qai (vai )dvai = −G

(
− ma

i

2Saii

)
+ log

(
Saii
2

)
− γ,

where γ is the Euler constant and

G(t) = 2t

∞∑
j=0

j!

(2)j (3/2)j
tj

is the partial derivative of the confluent hypergeometric function [17, 1]. However, in this work we
focus on the Taylor series approximation for Ψ(v) = v2, as implementation of the above bound uses
a large look-up table and involves linear interpolation. Furthermore, it is suggested in experiments
that the secondary lower bound proposed above in Lemma 2 can lead to poor calibration, for more
details, refer to Section 4.

E.3 KL Term

Since q(u) and p(u|W ) are both normal distribution, the KL divergence is tractable:

KL(q(u)||p(u|W )) =
1

2

{
Tr[K−1

WWΣu]+log
|KWW |
|Σu|

−m+(µW−ηu)TK−1
WW (µW−ηu)

}
(36)

E.4 Taylor series approximation in the variational method

We consider the integral ∫
log
( N∑
i=1

pai (vai )2
)
qa(va)dva

where qa is N (ma, Sa). We note that this can be written as E log ‖V a‖2, where V a ∼ N(m̃a, S̃a),
with P a = diag

(
pa1 , . . . , p

a
Na

)
, m̃a = P a1/2ma and S̃a = P a1/2SaP a1/2. Note that ‖V a‖2

follows a non-central chi-squared distribution. We now resort to a Taylor series approximation for
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E log ‖V a‖2 (similar to [29]) around E ‖V a‖2 = ‖m̃a‖2 + trS̃a, resulting in

E log
(
‖V a‖2

)
= log

(
E ‖V a‖2

)
+E

‖V a‖2 − E ‖V a‖2

E ‖V a‖2
−

(
‖V a‖2 − E ‖V a‖2

)2

2
(
E ‖V a‖2

)2 +O
((
‖V a‖2 − E ‖V a‖2

)3
)

≈ log
(
‖m̃a‖2 + trS̃a

)
−

2m̃a>S̃am̃a + tr

((
S̃a
)2
)

(
‖m̃a‖2 + trS̃a

)2 .

As commented in [29], approximation is very accurate when E ‖V a‖2 is large, but the caveat is that
the Taylor series converges only for ‖V ‖2 ∈ (0, 2E ‖V ‖2) so this approach effectively ignores the
tail of the non-central chi-squared.

F Code

All of our models were implemented in TensorFlow, and code will be published and available for use.

G Additional Malaria Experimental Results

Here we provide additional experimental results for the malaria dataset. In table 1, we provide
results for bag level performance for NLL and MSE with 10 different test sets (after retrial of the
experiments, splitting the data across train, early-stop, validation and testing). Statistical significance
was not establish for the best performing Nyström method versus the VBAgg methods, this is shown
in Table 2. We further provide additional prediction/uncertainty patches for 3 different splits to
highlight the general behaviour of the trained models, with further explanation and details below.

It is also noted in all cases λai is the incidence rate per 1000 people. For VBAgg and Nyström, we
use an additive kernel, between an ARD kernel and a Matern kernel:

k((x, sx), (y, sy)) = γ1 exp

(
−1

2

18∑
k=1

1

`k
(xk − yk)2

)
+γ2

(
1 +

√
3||sx − sy||2

ρ

)
exp

(
−
√

3||sx − sy||2
ρ

)
(37)

where x, y are covariates, and sx, sy are their respective spatial location. Here, we learn any scale
parameters and weights during training. For the NN, we also use this kernel as part of manifold
regularisation, however we use an RBF kernel instead of an ARD kernel, due to parameter tuning
reasons (we can no longer learn these scales).

For constant model, bag rate predictions are computed by, paλ̂bag
c ,where λ̂bag

c = 1∑n
a=1 p

a

∑n
a=1 y

a.
This essentially takes into account of population.

Table 1: Results for the Poisson Model on the malaria dataset with 10 different re-splits of train,
early-stopping, validation and test. Approximately, 191 bags are used for test set. Bag performance is
measured on a test set, with MSE computed between log(ya) and log(

∑Na

i=1 p
a
i λ̂

a
i ). Brackets include

standard deviation.
Bag NLL Bag MSE (Log)

Constant 173.1 (31.2) 4.08 (0.13)
Nyström-Exp 88.1 (25.1) 1.31 (0.15)
VBAgg-Sq-Obj 94.1 (34.0) 1.21 (0.05)
VBAgg-Exp-Obj 97.2 (39.6) 1.04 (0.11)
VBAgg-Sq 97.6 (39.0) 1.38 (0.18)
VBAgg-Exp 99.2 (39.8) 1.21 (0.19)
NN-Exp 164.4 (127.8) 1.82 (0.29)

19



Table 2: p-values from a Wilcoxon signed-rank test for Nyström-Exp versus the methods below for
Bag NLL and MSE for the malaria dataset. The null hypothesis is Nyström-Exp performs equal or
worse than the considered method on the test bag performance.

NLL MSE
Constant 0.0009766 0.0009766
NN-Exp 0.00293 0.0009766
VBAgg-Sq-Obj 0.1162 0.958
VBAgg-Sq 0.1377 0.1611
VBAgg-Exp-Obj 0.08008 1.0
VBAgg-Exp 0.09668 0.958

Table 3: p-values from a Wilcoxon signed-rank test for VBAgg-Sq versus the methods below for Bag
NLL and MSE for the malaria dataset. The null hypothesis is VBAgg-Sq performs equal or worse
than the considered method on the test bag performance.

NLL MSE
Constant 0.0009766 0.0009766
NN-Exp 0.01855 0.001953
VBAgg-Sq-Obj 0.6234 0.9861
Nyström-Exp 0.8838 0.8623
VBAgg-Exp-Obj 0.6875 1.0
VBAgg-Exp 0.3477 0.9346

G.1 Predicted log malaria incidence rate for various models

Constant: Bag level observed incidences This is the baseline with λ̂ai being constant throughout
the bag, as shown in Figure 3. For training, we only use 60% of the data.

Figure 3: Predicted λ̂ai on log scale using constant model, for 3 different re-splits of the data.× denote
non-train set bags.

VBAgg-Sq-Obj This is the VBAgg model with Ψ(v) = v2 and tuning of hyperparameters is
performed based on training objective, the lower bound to the marginal likelihood, we ignore early-
stop and validation set here. The uncertainty of the model seems reasonable, and we also observe that
in general the areas that are not in the training set have higher uncertainties. Furthermore, in all cases,
malaria incidence was predicted to be higher near the river, as discussed in Section 4.2.
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Figure 4: Top: Predicted λ̂ai on log scale for VBAgg-Sq-Obj. Bottom: Standard deviation of the
posterior v in (9) with VBAgg-Sq-Obj.

VBAgg-Sq This is the VBAgg model with Ψ(v) = v2 and tuning of hyperparameters is performed
based on NLL at the bag level. Predicted incidence are similar to the VBAgg-Sq-Obj model.
The uncertainty of the model is less reasonable here, this is expected behaviour, as we are tuning
hyperparameters based on NLL here. In the first patch, the same parameters was chosen as VBAgg-
Sq-Obj.

Figure 5: Top: Predicted λ̂ai on log scale for VBAgg-Sq. Bottom: Standard deviation of the posterior
v in (9) with VBAgg-Sq.

VBAgg-Exp-Obj This is the VBAgg model with Ψ(v) = ev and tuning of hyperparameters
is performed based on training objective, the lower bound to the marginal likelihood, we ignore
early-stop and validation set here. Predicted incidence seem to be stable in general, though some
smoothness is observed. The uncertainty of the model is also not very reasonably here, but this
behaviour was observed in the Toy experiments, and likely due to an additional lower bound.
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Figure 6: Top: Predicted λ̂ai on log scale for VBAgg-Exp-Obj.Bottom: Standard deviation of the
posterior v in (9) with VBAgg-Exp-Obj.

VBAgg-Exp This is the VBAgg model with Ψ(v) = ev and tuning of hyperparameters is performed
based on NLL. For details, see discussion above for the VBAgg-Exp-Obj model.

Figure 7: Top: Predicted λ̂ai on log scale for VBAgg-Exp. Bottom: Standard deviation of the
posterior v in (9) with VBAgg-Exp.

Nyström-Exp This is the Nyström-Exp model, it is clear that while it performs best in terms of bag
NLL, sometimes prediction are too smooth in the pixel space, this is because it optimises directly bag
NLL. This pattern might be seen to be unrealistic, and may cause useful covariates to be neglected.
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Figure 8: Predicted λ̂ai on log scale for Nyström-Exp.

NN-Exp We can see that the model is not very stable, this can be potentially due to the model
does not have an inbuilt spatial smoothness function unlike other methods. It only uses manifold
regularisation for training. Also, the maximum predicted pixel level intensity rate λ̂ai is over 1000 in
some cases, this is clearly physically impossible given λai is rate per 1000 people.

Figure 9: Predicted λ̂ai on log scale for NN-Exp.

G.2 Remote Sensing covariates that provide the existence of a river

Here, we provide figures for some covariates that give information that there is a river as indicated by
the triangles in Figure 2.

Figure 10: Topographic wetness index, measures the wetness of an area, rivers are wetter than others,
as clearly highlighted.

23



Figure 11: Land Surface Temperature at night, river is hotter at night, due to river being able to retain
heat better.

H Additional Toy Experimental Results

In this section, we provide additional experimental results for the Normal and Poisson model. In
particular, we provide results on test bag level performance, and provide also prediction, calibration
and uncertainty plots.

For the VBAgg model, during the tuning process, it is possible to choose tuning parameters (e.g.
learning rate, multiple-initialisations, landmark choices) based on NLL with an additional validation
set or on the objective L1 on the training set. To compare the difference, we denote the model tuned
on NLL as VBAgg and the model tuned on L1 as VBAgg-Obj. Intuitively, as VBAgg-Obj attempts to
obtain as tight a bound to the marginal likelihood, we would expect better performance in calibration,
i.e. more accurate uncertainties.

For calibration plots, we compute the α quantiles of the approximated posterior distribution and
consider the ratio of times the underlying rate parameter λai (or µai for the normal model) appear
inside the quantiles of the posterior distribution. If the model provides good uncertainties/calibration,
we should expect to see the quantiles to match with the observed ratio.

In the case of Ψ(v) = v2, the approximated posterior distribution is simply a non-central χ2

distribution, while for Ψ(v) = ev, this is a log-normal distribution. For the Normal Model, it is
simply a normal distribution, as we do not have any transformations. Calibration plots can be found
in Figure 20 and Figure 21 for the Normal Model, with Figure 14 and Figure 15 for the Poisson
Model.

For uncertainty plots, we plot the standard deviation of the posterior of v ∼ N (ma, Sa) (i.e. before
transformation through Ψ), as this provides better interpretability. Uncertainty plots can be found in
Figure 17 and 23

To demonstrate statistical significance of our result, we aggregate the repetitions in each experiment
for each method and consider a one sided rank permutation test (Wilcoxon signed-rank test) to see
whether VBAgg is statistically significant better than other approaches for individual NLL and MSE.

H.1 Poisson Model

H.1.1 Swiss Roll Dataset

We provide additional results here for the experimental settings that we consider.
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Figure 12: Varying number of bags over 5 repetitions.Left Column: Individual average NLL and
MSE on train set. Right Column: Bag average NLL and MSE on test set (of size 500). Constant
prediction NLL and MSE is 2.23 and 0.85 respectively. bag-pixel model prediction NLL is above 2.4
and MSE is above 3.0, hence not shown on graph.

The varying number of bags experimental results is found in Figure 12, with the corresponding table
of p-values in Table 4, 5 demonstrating statistical significance of the VBAgg-Exp and VBAgg-Sq
method. Similarly, the varying number of individuals per bag through Nmean experimental result
can be found in Figure 13, with the corresponding table of p-values in Table 6, 7. The comparison
between VBAgg-Exp and VBAgg-Sq was found to be non-significant.

Table 4: p-values from a Wilcoxon signed-rank test for VBAgg-Sq versus the methods below for
the varying number of bags experiment for the Poisson model. The null hypothesis is VBAgg-Sq
performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN-Exp 6.98e−06 0.00025
Nyström-Exp 0.00048 0.00015

Table 5: p-values from a Wilcoxon signed-rank test for VBAgg-Exp versus the methods below for
the varying number of bags experiment for the Poisson model. The null hypothesis is VBAgg-Exp
performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN-Exp 2.48e−06 2.48e−05
Nyström-Exp 0.0005 0.00025
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Figure 13: Varying number of individuals per bagNmean over 5 repetitions.Left Column: Individual
average NLL and MSE on train set. Right Column: Bag average NLL and MSE on test set (of size
500). Constant prediction NLL and MSE is 2.23 and 0.85 respectively.

Table 6: p-values from a Wilcoxon signed-rank test for VBAgg-Sq versus the methods below for
the varying number of individuals per bag experiment for the Poisson model. The null hypothesis is
VBAgg-Sq performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the
train set.

NLL MSE
NN-Exp 1.81e−05 9.53e−06
Nyström-Exp 0.062 0.041

Table 7: p-values from a Wilcoxon signed-rank test for VBAgg-Exp versus the methods below for
the varying number of individuals per bag experiment for the Poisson model. The null hypothesis is
VBAgg-Exp performs worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN-Exp 6.68e−05 0.00016
Nyström-Exp 0.049 0.062

Calibration Plots for the Swiss Roll Dataset In Figure 14 and 15, we provide calibration results
for both experiments that we have considered. See top of Appendix H for a further details. It is clear
that while VBAgg-Sq-Obj and VBAgg-Sq provides good calibration in general, this is not the case
for VBAgg-Exp-Obj and VBAgg-Exp. This is not surprising as the VBAgg-Exp methods uses an
additional lower bound.
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Figure 14: Absolute Error in coverage from 70% to 95% for the increasing number of bags experiment
for the Poisson Model. Shaded regions highlight the standard deviation. Perfect coverage would
provide a straight line at 0 error.
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Figure 15: Absolute Error in coverage from 70% to 95% for the increasing number of individuals
per bag Nmean and Nstd for the Poisson Model. Shaded regions highlight the standard deviation.
Perfect coverage would provide a straight line at 0 error.
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Prediction and uncertainty plots In Figure 16 and 17, we provide some prediction plots for
different models, and uncertainties for VBAgg models.
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Figure 16: Individual predictions on the train set for the swiss roll dataset with 150 bags for NN and
Nyström model. Here Nmean = 150, with Nstd = 50.
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Figure 17: Predictions and uncertainty on the swiss roll dataset with 150 bags for the VBAgg-Obj
models. Here Nmean = 150, with Nstd = 50. For uncertainty, we plot the standard deviation of the
posterior of v, coming from va ∼ N (ma, Sa) in (9).
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H.2 Normal Model

H.2.1 Swiss Roll Dataset

In this section, we provide some experimental results for the Normal model, where throughout we
assume τai = τ , same for all individuals.

We consider the same swiss roll dataset as in the Poisson model, here the colour of each point to be
the underlying mean µai . We then consider yai ∼ N (µa, τ) with τ = 0.1, hence bag observations are
given by ya =

∑Na

i=1 y
a
i ∼ N (µa, Naτ) with µa =

∑Na

i=1 µ
a
i . Here, the goal is to predict µai and τ ,

given bag observations ya only. The results for the experiments are shown below in Figure 18 and
Figure 19, which shows the VBAgg outperforming the NN and Nyström model. To show statistical
significance, we also report the corresponding table of p-values in Table 8 and Table 9. Furthermore,
we would also like to point out that the VBAgg is well calibrated as shown in Figure 20.
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Figure 18: Varying number of bags over 5 repetitions for the Normal model.Left Column: Individual
average NLL and MSE on train set. Right Column: Bag average NLL and MSE on test set (of size
500). Constant model individual MSE is 0.04.

Table 8: p-values from a Wilcoxon signed-rank test for VBAgg versus the methods below for the
varying number of bags experiment for the Normal model. The null hypothesis is VBAgg performs
equal or worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN 5.96e−07 4.79e−09
Nyström 4.01e−08 6.52e−09

Table 9: p-values from a Wilcoxon signed-rank test for VBAgg versus the methods below for the
varying number of individuals per bag Nmean experiment for the Normal nodel. The null hypothesis
is VBAgg performs worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN 4.77e−06 4.77e−06
Nyström 4.77e−06 4.77e−06

Calibration Plots for the Swiss Roll Dataset In Figure 20 and 21, we provide calibration results
for both experiments that we have considered. See top of Appendix H for further details. It is clear
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Figure 19: Varying number of individuals per bagNmean over 5 repetitions.Left Column: Individual
average NLL and MSE on train set. Right Column: Bag average NLL and MSE on test set (of size
500). Constant model individual MSE is 0.039.

that VBAgg-Obj has better calibration in general, this is not surprising as it is tuned based on the
correct objective, rather than NLL.
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Figure 20: Absolute Error in coverage from 70% to 95% for the increasing number of bags experiment
for the Normal Model. Shaded regions highlight the standard deviation. Perfect coverage would
provide a straight line at 0 error.
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Figure 21: Absolute Error in coverage from 70% to 95% for the increasing number of individuals per
bag Nmean and Nstd for the Normal Model. Shaded regions highlight the standard deviation. Perfect
coverage would provide a straight line at 0 error.
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Prediction and uncertainty plots Here, we provide some prediction plots for different models.
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Figure 22: Individual predictions on the train set for the swiss roll dataset with 150 bags for NN and
Nyström model. Here Nmean = 150, with Nstd = 50.

10 5 0 5 10 0
5
10

15
20

10

5

0

5

10

15

VBAgg-Obj

10 5 0 5 10 0
5
10

15
20

10

5

0

5

10

15

VBAgg-Obj uncertainty

0.2

0.4

0.6

0.8

1.0

0.05

0.10

0.15

0.20

0.25

Figure 23: Predictions and uncertainty on the swiss roll dataset with 150 bags for the VBAgg-Obj
model. Here Nmean = 150, with Nstd = 50. For uncertainty, we plot the standard deviation of the
posterior of v, coming from va ∼ N (ma, Sa) in (9).

H.2.2 Elevators Dataset

For a real dataset experiment, we consider the elevators dataset11, which is a large scale regression
dataset12 containing 16599 instances, with each instance ∈ R17. This dataset is obtained from the
task of controlling F16 aircraft, with the label y being a particular action taken on the elevators of the
aircraft ∈ R. For the model formulation we assume each label follows a normal distribution, i.e.
yl ∼ N (µl, τ), where τ is a fixed quantity to be learnt. In practice, we can imagine the action taken
may differ according to the operator.

In order formulate this dataset in an aggregate data setting, we sample bag sizes from a negative
binomial distribution as before, with Nmean = 30 and Nstd = 15, and also take wai = 1. To place
observations into bags, similar to the swiss roll dataset, we consider a particular covariate, and place
instances into bags based on the ordering of the covariate. We now have the bag-level model given by
ya ∼ N (µa, Naτ), with individual model yai ∼ N (µai , τ) and it is our goal to predict µai (and also
infer τ ), given only ya. After the bagging process, we obtain approximately 225 bags for training,
and 33 bags each for early stopping, validation and testing (for bag level performance). Further,
in order to neglect variables that do not provide signal, we use an ARD kernel for the VBAgg and

11This dataset is publicly available at http://sci2s.ugr.es/keel/dataset.php?cod=94
12We have removed one column that is almost completely sparse.
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Table 10: Results for the Normal Model on the elevators dataset with 50 repetitions. Indiv represents
individuals on train set here, while bag performance is measured on a test set. Numbers in brackets
denotes p-values from a Wilcoxon signed-rank test for VBAgg versus the method. The null hypothesis
is VBAgg performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the
train set. It is also noted MSE is computed on the observed yai or ya, rather than the unknown µai or
µa.

Indiv NLL Bag NLL Indiv MSE Bag MSE
Constant N/A N/A 0.010 0.366
VBAgg -1.69 0.003 0.0018 0.052
VBAgg-Obj -1.71 -0.02 0.0018 0.052
Nyström −1.57(1.5e−13) 0.003 0.0024 (8.9e−16) 0.041
NN -1.64 (0.0001258) 0.082 0.0021 (8.8e−10) 0.041

Nyström model, as below:

kard(x, y) = γscale exp

(
−1

2

d∑
k=1

1

`k
(xk − yk)2

)
(38)

and learn kernel parameters γscale and {`k}dk=1. We repeat this process and splitting of the dataset
50 times and report individual NLL results, and also MSE results in Table 10. From the results,
we observe that the VBAgg model performs better the Nyström and NN model, with statistical
significance.
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